
Berlin · Beijing · Shenzhen

Representing,
transiting &
searching
multimodal data

Han Xiao, Founder of Jina AI
 @hxiao @JinaAI_

Neural Search in Action

https://twitter.com/hxiao

About me & Jina AI
Han Xiao, Founder & CEO of Jina AI. Based in Berlin, Germany.

- ML PhD in 2014 TU Munich; Zalando Research; Tencent AI Lab; Creator
of Fashion-MNIST.

Jina AI

- Founded in 2020, focus on multimodal AI search & create
- Opensource contributor: Jina, DocArray (Linux Foundation),

CLIP-as-service, …
- 60 people, HQ in Berlin. Offices in Beijing, Shenzhen.

Jina AI Tech Spectrum

Prompt tuning

Prompt serving

Model tuning

Model serving

the deployment of fine-tuned models in a
production environment, usually requiring
substantial resources such as GPU hosting.
MLOps, emphasizing the serving of mid-size to
large models in a scalable, efficient, and reliable
manner.

the process of crafting and refining the input
prompts in order to guide its output towards
specific, desired responses.

wrapping and serving prompts through an API,
without hosting heavy models. The API calls a
public large language model service and handles
the orchestration of inputs and outputs in a chain
of operations.

Also known as fine-tuning, involves adjusting the
parameters of a pre-trained model on a new,
often task-specific dataset to improve its
performance and adapt it to a specific
application.

Prompt tuning

Prompt serving

Model tuning

Model serving

PromptPerfect

Finetuner

Inference API
Jina+DocArray

Jcloud

OpenGPT
CLIP-as-service

DiscoArt

DevGPT

ThinkGPT

DalleFlow

DocsQA

AgentChain

Rationale

SceneX

Ensemble
ArtiBanner

LLMSearch

LC-serve

Faster time2market

Long-term invest

Agenda

- Preliminary: multimodal AI
- Opensource package: DocArray

- Motivation
- Representing data
- Transiting data
- Storing data
- Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+
concepts like data classes could be helpful.

Preliminary:
from unimodal to multimodal

Cross-modal

Creative AI

Neural search

Multimodal

Unimodal AI

Before 2021

2022

Future

From unimodal to multimodal

 "modality" roughly means "data type".

- Unimodal AI refers to applying AI to one specific type of data.
- Most early machine learning works fall into this category.
- Even today, when you open any machine learning literature,

unimodal AI is still the majority of the content.

Unimodal - NLP
LDA was the 2010's transformer

Unimodal tasks in NLP
Adhoc methods for NLP problems

Unimodal - CV
Fashion-MNIST, 2017

Unimodal tasks in CV

Unimodal tasks in speech & audio

Unimodal know-how are hardly transferable

● Tasks are specific to just one modality (e.g.

textual, visual, acoustic, etc).

● Knowledge is learned from and applied to

only one modality (i.e. a visual algorithm can

only learn from and be applied to images).

A detour: cross-modal model
NIPS 2010, Cross-LDA

Erase the boundary between modalities

- Tasks are shared and transferred between multiple modalities (so
one algorithm can work with images and text and audio).

- Knowledge is learned from and applied to multiple modalities (so an
algorithm can learn from textual data and apply that to visual data).

Paradigm shift from unimodal to multimodal

The rise of multimodal AI can be attributed to advances in two machine
learning techniques: Representation learning and transfer learning.

- Representation learning lets models create common representations
for all modalities.

- Transfer learning lets models first learn fundamental knowledge, and
then fine-tune on specific domains.

CLIP, DALLE, BLIP, Bark, GPT4

We will see more and more AI
applications move beyond
one data modality and
leverage relationships
between different modalities

“An artificial intelligence system
trained on words and sentences

alone will never approximate
human understanding.”

Y. Lecun in 2022 in AI And The Limits Of Language

Multimodal AI is the future,
but the ML ecosystem is not yet

suited for it.

Agenda

- Preliminary: multimodal AI
- Opensource package: DocArray

- Motivation
- Representing data
- Transiting data
- Storing data
- Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+
concepts like data classes could be helpful.

DocArray for
representing, transiting,

storing, searching
multimodal data

Representing multimodal data is a pain

- Lack of common interface for different modalities makes it difficult to
work with multiple modalities at the same time.

- No easy way to represent unstructured and nested multimodal data.

Storage

Audio

Image

Video

Text

3D mesh

ComputePreprocess

…
……

…

Lack of common interface

● Unstructured

document

● Nested content

● Different modalities
(text, image, …)

No easy way to represent
unstructured nested multimodal data

DocArray way of representing multimodal
data

Frequent data transfer over network is
expensive

Multimodal data is processed by multiple models and models are usually deployed in a
distributed way.

Performant serialization is important
DocArray is designed to be “ready-to-wire” at anytime.

Binary serialization optimized for in-transit &
at-rest

Binary serialization optimized for in-transit &
at-rest

Storing nested data with databases is
complicated

- Complex and nested schema are not directly supported in
databases

- Explosion in numbers of vector databases with different APIs but no
universal client

DocArray way of storing data

DocArray way of storing data

Vector Search via a consistent API

Vector Search via a consistent API

Quick Recap
● It’s like JSON, but for intensive computation.
● It’s like numpy.ndarray, but for unstructured data.
● It’s like pandas.DataFrame, but for nested and mixed media data with embeddings.
● It’s like Protobuf, but for data scientists and deep learning engineers.

Quick Recap
● It’s like JSON, but for intensive computation.
● It’s like numpy.ndarray, but for unstructured data.
● It’s like pandas.DataFrame, but for nested and mixed media data with embeddings.
● It’s like Protobuf, but for data scientists and deep learning engineers.

Hands-on DocArray

Install DocArray
To install DocArray (0.33), you can use the following command:

pip install "docarray[full]"

https://docs.docarray.org/

For old DocArray, more compatibility and features

pip install "docarray[full]"==0.21

https://docs.docarray.org/

Representing data - Document
At the heart of DocArray lies the concept of BaseDoc.

The following Python code defines a BannerDoc class that can be used to represent the data of a website banner:

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc

Representing data - Document

Representing multimodal data with nested
structure
Let's say you want to represent a YouTube video in your application, perhaps to build a search system for YouTube
videos.

A YouTube video is not only composed of a video, but also has a title, description, thumbnail (and more, but let's
keep it simple).

All of these elements are from different modalities:

the title and description are text,

the thumbnail is an image,

and the video itself is, well, a video.

DocArray lets you represent all of this multimodal data
in a single object.

Representing multimodal data with nested
structure

Representing multimodal data with nested
structure

Representing multimodal data with nested
structure

Representing multimodal data with nested
structure

You see here that ImageDoc and VideoDoc are also
BaseDoc, and they are later used inside another
BaseDoc`. This is what we call nested data
representation.

BaseDoc can be nested to represent any kind of data
hierarchy.

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc

Representing multimodal data with nested
structure

You see here that ImageDoc and VideoDoc are also
BaseDoc, and they are later used inside another
BaseDoc`. This is what we call nested data
representation.

BaseDoc can be nested to represent any kind of data
hierarchy.

This representation can be used to send or
store data. You can even use it directly to
train a machine learning Pytorch model on
this representation.

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/user_guide/sending/first_step/
https://docs.docarray.org/user_guide/storing/first_step/
https://docs.docarray.org/how_to/multimodal_training_and_serving/
https://pytorch.org/docs/stable/index.html

Recap: representing multimodal data
- "Dataclass" look and feel, for defining the structure
- Strong typing, for defining modality

- Python built-in types
- Numpy types
- URI types

- Text
- Image
- Audio
- Video
- Mesh3D
- PointCloud3D

- Tensor types
- ImageTensor
- AudioTensor
- VideoTensor
- Embedding

- Optional[]

Representing an array of multimodal data
The fundamental building block of DocArray is the BaseDoc class which represents a single document, a single
datapoint.

However, in machine learning we often need to work with an array of documents, and an array of data points.

We introduce

● DocList which is a Python list of BaseDocs
● DocVec which is a column-based representation of BaseDocs

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da_stack/#docarray.array.doc_vec.doc_vec.DocVec

Example of DocList

Example of DocList

Example of DocList
DocList and DocVec are both AnyDocArrays. The following section will use DocList as an example, but the same applies to DocVec.

Example of DocList

Accessing member attribute at array level

Accessing member attribute at array level

DocList[DocType] syntax
DocList[DocType] creates a custom DocList that can only contain DocType
Documents.

Non-typing DocList for
heterogeneous data

Strong-typing DocList for
homogeneous data

https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList

DocList vs DocVec
DocList is based on Python Lists. You can append, extend, insert, pop, and so on. In DocList, data is individually
owned by each BaseDoc collect just different Document references.

Use DocList when you want to be able to rearrange or re-rank your data. One flaw of DocList is that none of the
data is contiguous in memory, so you cannot leverage functions that require contiguous data without first copying
the data in a continuous array.

DocVec is a columnar data structure. DocVec is always an array of homogeneous Documents. The idea is that
every attribute of the BaseDoc will be stored in a contiguous array: a column.

https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da_stack/#docarray.array.doc_vec.doc_vec.DocVec

DocList vs DocVec
Let's say you want to embed a batch of Images:

def embed(image: NdArray['batch_size', 3, 224, 224]):

...

DocList vs DocVec

DocList vs DocVec

embed

embed

DocList vs DocVec

Access the view of Document in DocVec
If you access a document inside a DocVec you will get a document view. A document view is a view of the columnar
data structure which looks and behaves like a BaseDoc instance. It is a BaseDoc instance but with a different way to
access the data.

Access the view of Document in DocVec
If you access a document inside a DocVec you will get a document view. A document view is a view of the columnar
data structure which looks and behaves like a BaseDoc instance. It is a BaseDoc instance but with a different way to
access the data.

you should use DocVec when you need to work with
contiguous data, and you should use DocList when
you need to rearrange or extend your data.

Storing & retrieving via Vector Database

Storing & retrieving via Vector Database

Document Index: ORM for vector DBs
Document Index provides a unified interface to a number of vector databases.

You can think of Document Index as an ORM for vector databases.

Currently, DocArray supports the following vector databases:

● Weaviate | Docs
● Qdrant | Docs
● Elasticsearch v7 and v8 | Docs
● HNSWlib | Docs

*Old DocArray v0.21 supports Milvus, Redis, Opensearch

https://learn.microsoft.com/en-us/semantic-kernel/concepts-ai/vectordb
https://sqlmodel.tiangolo.com/db-to-code/
https://weaviate.io/
https://docs.docarray.org/user_guide/storing/index_weaviate/
https://qdrant.tech/
https://docs.docarray.org/user_guide/storing/index_qdrant/
https://www.elastic.co/elasticsearch/
https://docs.docarray.org/user_guide/storing/index_elastic/
https://github.com/nmslib/hnswlib
https://docs.docarray.org/user_guide/storing/index_hnswlib/

Construct a HNSWDocumentIndex
To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex

Construct a HNSWDocumentIndex
To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

In this code snippet, HnswDocumentIndex takes a
schema of the form of MyDoc. The Document Index
then creates a column for each field in MyDoc.

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex

Construct a HNSWDocumentIndex
To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

In this code snippet, HnswDocumentIndex takes a
schema of the form of MyDoc. The Document Index
then creates a column for each field in MyDoc.

The column types in the backend database are
determined by the type hints of the document's
fields. Optionally, you can customize the database
types for every field.

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations

Construct a HNSWDocumentIndex
To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

In this code snippet, HnswDocumentIndex takes a
schema of the form of MyDoc. The Document Index
then creates a column for each field in MyDoc.

The column types in the backend database are
determined by the type hints of the document's
fields. Optionally, you can customize the database
types for every field.

Most vector databases need to know the
dimensionality of the vectors that will be stored.
Here, that is automatically inferred from the type hint
of the embedding field: NdArray[128] means that the
database will store vectors with 128 dimensions.

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations

Index data

Index data

As you can see, DocList[MyDoc] and
HnswDocumentIndex[MyDoc] are both
parameterized with MyDoc. This means
that they share the same schema, and in
general, the schema of a Document
Index and the data that you want to
store need to have compatible schemas

Vector search

Vector search

Vector search

Vector search

Hybrid search through the query builder
Document Index supports atomic operations for vector similarity search, text search and filter search.

To combine these operations into a single, hybrid search query, you can use the query builder that is accessible
through build_query():

https://docs.docarray.org/API_reference/doc_index/doc_index/#docarray.index.abstract.BaseDocIndex.build_query

Customize vector DB configuration

Indexing and
searching
multimodal data
In the following example you can see a
complex schema that contains nested
Documents. The YouTubeVideoDoc contains a
VideoDoc and an ImageDoc, alongside some
"basic" fields:

Indexing and searching multimodal data
You can perform search on any nesting level by using the dunder operator to specify the field defined in the
nested data.

Nested DocList with
subindex
Documents can be nested by containing a DocList of other
documents, which is a slightly more complicated scenario
than the previous one.

In this case, the nested DocList will be represented as a new
sub-index (or table, collection, etc., depending on the
database backend), that is linked with the parent index
(table, collection, ...).

Search by subindex

Transiting data over network
Sending via REST API/JSON -> Backend: FastAPI Sending via gRPC/ws -> Backend: Jina microservice

Transiting data over network
Sending via REST API/JSON -> Backend: FastAPI Sending via gRPC/ws -> Backend: Jina microservice

Transiting data over network
Sending via gRPC/ws -> Backend: Jina microservice

Transiting data over network
Sending via gRPC/ws -> Backend: Jina microservice

Agenda

- Preliminary: multimodal AI
- Opensource package: DocArray

- Motivation
- Representing data
- Transiting data
- Storing data
- Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+
concepts like data classes could be helpful.

An end to end example

https://docs.docarray.org/how_to/multimodal_training_and_serving/

https://docs.docarray.org/how_to/multimodal_training_and_serving/

Berlin · Beijing · Shenzhen

Thanks for
your
attention

jina.ai
@JinaAI_
han.xiao@jina.ai

