Berlin - Beijing - Shenzhen

AAAAAAAAAAAAAAAA

Representing,
transiting &
sedrching
multimodal data

Han Xiao, Founder of Jina Al
W @hxico [@JinaAl_

https://twitter.com/hxiao

About me & Jina Al

Han Xiao, Founder & CEO of Jina Al. Based in Berlin, Germany.

ML PhD in 2014 TU Munich; Zalondo Research; Tencent Al Lab; Creator
of Fashion-MNIST.

Jina Al

Founded in 2020, focus on multimodal Al search & create
Opensource contributor: Jina, DocArray (Linux Foundation),
CLIP-as-servics, ..

60 people, HQ in Berlin. Offices in Beijing, Shenzhen.

A|30
DAC

EXCBINSIGHTS

100 100

BECBINSIGHTS

Jina Al Tech Spectrum

the deployment of fine-tuned models in a
production environment, usually requiring
substantial resources such as GPU hosting.
MLOps, emphasizing the serving of mid-size to
large models in a scalable, efficient, and reliable
manner.

Model serving

Prompt tuning

the process of crafting and refining the input
prompts in order to guide its output towards
specific, desired responses.

Also known as fine-tuning, involves adjusting the
parameters of a pre-trained model on a new,
often task-specific dataset to improve its
performance and adapt it to a specific

application.

Model tuning

Prompt serving

wrapping and serving prompts through an AP,
without hosting heavy models. The API calls a
public large language model service and handles
the orchestration of inputs and outputs in a chain
of operations.

yine Prompt tuning

© PromptPerfect

SceneX
Model serving —0 A Prompt Serving
A Jina+DocArray LC-serve

Rationale
A Jcloud 2

Inference API

A OpenGPT ¢
L 4

*

@® Finetuner

Model tuning

Agenda

- Preliminary: multimodal Al

- Opensource package: DocArray
- Motivation

Representing data

Transiting data

Storing data

Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+
concepts like data classes could be helpful.

Preliminary:
from unimodal to multimodal

Unimodal Al

Before 2021

2022

Creative Al

Multimodal

A

Y

Cross-modal

Neural search

Future

From unimodal to multimodal

‘'modality’ roughly means "data type".

- Unimodal Al refers to applying Al to one specific type of data.

- Most early machine learning works fall into this category.

- Even today, when you open any machine learning literature,
unimodal Al is still the majority of the content.

Unimodal - NLP

LDA was the 2010's transformer

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co.,New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make amark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.000 each. The Juilliard School, where music and
the performing arts are taught, will get $250.000. The Hearst Foundation. aleading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100.000
donation, too.

JMLR: Workshop and Conf P ings 13: 63-78
2nd Asian Conference on Machine Learning (ACML2010), Tokyo, Japan, Nov. 8-10, 2010.

Efficient Collapsed Gibbs Sampling For Latent Dirichlet
Allocation

Han Xiao XIAOH@IN.TUM.DE
Thomas Stibor STIBOR@IN.TUM.DE
Department of Informatics

Technical University of Munich, GERMANY

Editor: Masashi Sugiyama and Qiang Yang

Abstract

Collapsed Gibbs sampling is a frequently applied method to approximate intractable inte-
grals in probabilistic generative models such as latent Dirichlet allocation. This sampling
method has however the crucial drawback of high computational complexity, which makes
it limited applicable on large data sets. We propose a novel dynamic sampling strategy to
significantly improve the efficiency of collapsed Gibbs sampling. The strategy is explored
in terms of efficiency, convergence and perplexity. Besides, we present a straight-forward
parallelization to further improve the efficiency. Finally, we underpin our proposed im-
provements with a comparative study on different scale data sets.

Keywords: Gibbs sampling, Optimization, Latent Dirichlet Allocation

1. Introduction

Latent Dirichlet allocation (LDA) is a generative probabilistic model that was first pro-
posed by Blei et al. (2003) to discover topics in text documents. LDA is based on the

Unimodal tasks in NLP

Adhoc methods for NLP problems

Unimodal - CV

Fashion-MNIST, 2017

=—==3 i

B P=—=—s=s)

I B e —

t (D Deses

1Bim=={‘f(‘ £l

e = oms BRI ED——=a290m)|

e R i
, DD BT

]

A.AJ_,_
Tl

P
X

d =)

§=Jeaam

M
i
"
A
Q&

N A e e

[, B e-smE=S

.

=

ﬁibﬁﬁG&Q-ﬂuii
iy e e) g S, o i @ g ™ | iy B i SR
REESEmBesfiicO e . @ESUos g
VWYEYY VNI VES VYUY IV IYIYEY Y

BAPALLE) =S PDAPAASBAALSnNAnRuT

)7747v2 [cs.LG] 15 Sep 2017

Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms

Han Xiao Kashif Rasul
Zalando Research Zalando Research
MiihlenstraBe 25, 10243 Berlin Miihlenstrae 25, 10243 Berlin
han.xiao@zalando.de kashif.rasul@zalando.de

Roland Vollgraf
Zalando Research
MiihlenstraBe 25, 10243 Berlin
roland.vollgraf@zalando.de

Abstract

We present Fashion-MNIST, a new dataset comprising of 28 x 28 grayscale
images of 70,000 fashion products from 10 categories, with 7,000 images
per category. The training set has 60,000 images and the test set has
10,000 images. Fashion-MNIST is intended to serve as a direct drop-
in replacement for the original MNIST dataset for benchmarking machine
learning algorithms, as it shares the same image size, data format and the
structure of training and testing splits. The dataset is freely available at
https://github.com/zalandoresearch/fashion-mnist.

Unimodal tasks in CV

Scene
understanding

Object classification

Image

segmentation Object tracking

and detection Action recognition

Texture recognition

Stereo vision s }
and classification

3D reconstruction Pose estimation Depth estimation

Object recognition
in video

Facial recognition
and identification

Human activity Image
recognition super-resolution

Material recognition

Video frame
interpolation

Multiple object

tracking in 3D akadd

Neural style transfer

Image inpainting

Visual Modality

Unimodal tasks in speech & audio

Speech

Speaker
Enhancement

Recoghnition Speaker Diarization

Automatic Speech

Recognition Text-to-Speech

Music Tempo
Estimation

Music Structure
Segmentation

Music Artist
Recognition

Music Genre
Recognition

Music
Recommendation

Audio Scene
Recognition

Sound Event
Localization

Sound Event
Classification

Sound Event
Detection

Audio Source
Separation

Voice Activity
Detection

Emotion Silence Detection

Recognition

Audio Captioning Speech Translation

Acoustic Modality

Unimodal know-how are hardly transferable

Natural language

Sentiment analysis Text classification Topic modeling Text summarization G

Named entity Word sense Parts-of-speech Grammatical

recognition disambiguation tagging parsing Rlocpezay ety

Information
extraction

Semantic role Part-of-speech Co-reference . Sentence
labeling induction resolution Ricpelnissctich segmentation
Textual Modality
.
Acoustic = -
S L3 i

recognition
Material recognition S0
- BARans

Visual Modality

fextuc vual acoustc ee).

e Knowledge is learned from and applied to sic S
only one modality (i.e. a visual algorithm can Recogniton

. . udio Captionin Emoton eech Translation VI 6 Silence Detection

only learn from and be applied to images).

Question answering Spam filtering Language modeling Dialog systems

e Tasks are specific to just one modality (e.g.

Acoustic Modality

A detour: cross-modal model

NIPS 2010, Cross-LDA

Toward Artificial Synesthesia:
Linking Images and Sounds via Words

Han Xiao, Thomas Stibor
Department of Informatics
Technical University of Munich
Garching, D-85748
{xiaoh, stibor}@in.tum.de

Abstract

‘We tackle a new challenge of modeling a perceptual experience in which a
stimulus in one modality gives rise to an experience in a different sensory
modality, termed synesthesia. To meet the challenge, we propose a probabilistic
framework based on graphical models that enables to link visual modalities and
auditory modalities via natural language text. An online prototype system is
developed for allowing human judgement to evaluate the model’s perfon'nance
Experimental results indicate and of the

1 Introduction

A picture of a golden beach might stimulate human’s hearing, probably, by imagining the sound of
waves crashing agams[the shore. On the other hand, the sound of a baaing sheep might ﬂlusu'atc
a green hillside in front of your eyes. In this kind of experience is termed

That is, a perceptual experience in which a stimulus in one modality gives rise to an expenence in
a different sensory modality. Without a doubt, the creative process of humans (e.g. painting and
composing) is to a large extent attributed to their ‘While ory
links snch ac connd and vicion are anite common to himans machines do not nossese the same

Sound

Explicit linking z
31
£

0 ’H]T

: me
1.5. BACH VIOLIN Sk

<—>| COMPOSER |[<—>| STRING _|<—>3
VIOLINIST INSTRUMENT g
Implicit linking via text &

.
Time

Input

Feature extraction

Build codebook

Represent each
image into a bag
of visual word

%D Feed data into
E probabilistic
] topic model

caption

|

Y

|

LA

A h N 0™
N\ ygeee() 3

Training

Represent each
sound into a bag of
auditory word

caption

£ ‘\) 2
, N , N p N
_ Corr-LDA) (_ WordNet) (_ Corr-LDA)

Testing

Unknown Image

O
NA
v

—~—X_

Unknown Sound

AN
) [\

\\ YAV, ’ !

&

AN OA A
LOLO LG HAT AN
A h, A A, AN
W W O

AT
QOO -«

|

oAl
Tk Rk @

QOO---

|

Probabilistic topic model)

|

~

Ja

Predicted sound

Predicted image

uo1eIUasaIdal 29 UOTORIIXD AINJED

QoudIaJu]

Figure 2: Probabilistic framework for performing the image composition and sound illustration task. The
framework is an extension based on the work flow proposed in [8]. Images and sounds are represented in
bags-of-words, so that the difference between the two modalities can be omitted. Once we have the algorithm
for inferring sounds from an image, we can apply it to infer images from a sound by mirroring the algorithm.

Erase the boundary between modalities

Acoustic

Tasks are shared and transferred between multiple modalities (so
one algorithm can work with images and text and audio).
Knowledge is learned from and applied to multiple modalities (so an
algorithm can learn from textual data and apply that to visual data).

Paradigm shift from unimodal to multimodal

The rise of multimodal Al can be attributed to advances in two machine
learning techniques: Representation learning and transfer learning.

- Representation learning lets models create common representations

for all modalities.
- Transfer learning lets models first learn fundamental knowledge, and

then fine-tune on specific domains.

CLIP, DALLE, BLIP, Bark, GPT4

We will see more and more Al
applications move beyond @ @
one data modality and

leverage relationships A% ")) A
between different modalities

r‘#} Before n ‘#K After
L

= =

. [}
e e
® .

“An artificial intelligence system
trained on words and sentences
alone will never approximate
human understanding.”

Y. Lecun in 2022 in Al And The Limits Of Language

Multimodal Al is the future,
but the ML ecosystem is hot yet
suited for it.

Agenda

- Preliminary: multimodal Al

- Opensource package: DocArray
- Motivation

Representing data

Transiting data

Storing data

Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+
concepts like data classes could be helpful.

DocArray for
representing, transiting,
storing, searching
multimodal data

Representing multimodal data is a pain

- Lack of common interface for different modalities makes it difficult to
work with multiple modalities at the same time.
- No easy way to represent unstructured and nested multimodal data.

Lack of common interface

’.. 'Preprocess | ‘Compute | 'Storage |
o) " - ibros redis
| T

Video I TensorFlow drant
E . O PyTorch ®
a Image i - Milvus
L i O learn Ann($te

F 4 s <. Tokenizer | .

m. Text | spaCy SQLite

1 1
. [¥) Transformers |
1 1

JAS. XX .
e >
a1 elasticsearc h

No easy way to represent
unstructured nested multimodal data

=1 e Unstructured
document
e Nested content
‘ e Different modalities
=

(text, image, ...)

DocO

DocArray way of representing multimodal

data

By the Way A Post Travel Destination

Everything to know about flying
with pets, from picking your seat to
keeping your animal calm

By Nathan Diller

from docarray import dataclass, Docume
from docarray.typing import Image, Text, .

@dataclass

class WPArticle:
banner: Image
headline: Text
meta: JSON

a = WPArticle(
banner='dog-cat-flight.png',
headline="'Everything to know about f1l
meta={

'author': 'Nathan Diller',
‘column': 'By the Way — A Post Tr
Wi

doc = Document(a)

Frequent data transfer over network is
expensive

Multimodal data is processed by multiple models and models are usually deployed in a
distributed way.

Data at rest

Inactive data under very

occasional changes, stored Active data under constant Traversing a network or
physically in database, change, stored physically in temporarily residing in
warehouse, spreadsheet, database, warehouse, computer memory to be
archives, etc. spreadsheet, etc. read or updated

Performant serialization is important

DocArray is designed to be “ready-to-wire” at anytime.

JSON string: .from_json() /.to_json()
o Pydantic model: .from_pydantic_model() /.to_pydantic_model()

Bytes (compressed): .from_bytes() /.to_bytes()

o Disk serialization: .save_binary() /.load_binary()

Base64 (compressed): .from_base64() /.to_base64()

Protobuf Message: .from_protobuf() /.to_protobuf()

Python List: .from_list() /.to_list()

Pandas Dataframe: .from_dataframe() /.to_dataframe()

Cloud: .push() [.pull()

Binary serialization optimized for in-transit &
at-rest

Size in MB on 1M Docs

pickle-array, no-compress
pickle-array, |z4
pickle-array, gzip
protobuf-array, no-compress
protobuf-array, 1z4
protobuf-array, gzip

pickle, no-compress
pickle, 1z4

pickle, gzip

protobuf, no-compress
protobuf, 1z4

protobuf, gzip

0 100 200 300 400 500

Binary serialization optimized for in-transit &
at-rest

Time cost in seconds on 1M Docs

[Serialization time (s) [Deserialization time (s)

pickle-array, no-compress E 85
pickle-array, 1z4 4.2

pickle-array, gzip

11.0

protobuf-array, no-compress

protobuf-array, 1z4 28.4

protobuf-array, gzip

pickle, no-compress

Arguments

pickle, 1z4
pickle, gzip
protobuf, no-compress

protobuf, 1z4

protobuf, gzip

0 10 20 30

Storing nested data with databases is
complicated

- Complex and nested schema are not directly supported in
databases

- Explosion in numbers of vector databases with different APIs but no
universal client

DocArray way of storing data

o DocArray Storage

from docarray import DocumentArray, Document

DocumentArray(storage="milvus',

config={'connection': 'example.db'})

6 with da:
da.append(Document())
8 da.summary()

DocArray way of storing data

o DocArray Storage
from docarray import DocumentArray, Document

da = DocumentArray(storage="'milvus',
config={'connectio ‘'mivius’
‘qdrant’
5 with da: 'weaviate’
da.append(Document()) ‘elasticsearch'
da.summary() 'redis’

‘opensearch’
‘annlite’
‘sqlite’

Jine

Vector Search via a consistent API

locarray Document, DocumentArra

numpy

13 result = da.find(np.array([2, 2, 2]), limit=6)

Jine

Vector Search via a consistent API

Vector

. Vector search .
Name Construction Filtel
search +

Filter
In memory DocumentArray ()
dim, - SQLite DocumentArray(storage='sqlite') X X
Weaviate DocumentArray(storage='weaviate')
Qdrant DocumentArray(storage='qdrant"')

13 result = da.find(np.array([2, 2, 2]), limit=6

StILE (R \ AnnLite DocumentArray(storage="annlite')
ElasticSearch DocumentArray(storage='elasticsearch"')
Redis DocumentArray(storage="'redis"')

Milvus DocumentArray(storage='milvus')

Quick Recap

It's like JSON, but for intensive computation.

It's like numpy.ndarray, but for unstructured data.

It's like pandas.DataFrame, but for nested and mixed media data with embeddings.
It's like Protobuf, but for data scientists and deep learning engineers.

Jina DocArray numpy . ndarray JSON pandas.DataFrame Protobuf

Q u ic k R Tensor/matrix data X v
|

Text data X
T
L4 It's like JSOI Media data X X X X
e It'slike nurr
PY It's like pan: Nested data X X ings,
e It's like Prot:
Mixed data of the above four X X X X
Easy to (de)serialize X
Data validation (of the output) X X X
Pythonic experience X v X
10 support for filetypes X X X X
Deep learning framework support X X X
multi-core/GPU support v X X X

Rich functions for data types X X X

Hands-on DocArray

Install DocArray

To install DocArray (0.33), you can use the following command:

pip install "docarray[full]"

https://docs.docarray.org/

For old DocArray, more compatibility and features

pip install "docarray[full]"==0.21

https://docs.docarray.org/

Representing data - Document

At the heart of DocArray lies the concept of BaseDoc.

The following Python code defines a Bannerpoc class that can be used to represent the data of a website banner:

from docarray import BaseDoc
from docarray.typing import ImageUrl

class BannerDoc(BaseDoc) :
image_url: ImageUrl
title: str
description: str

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc

Representing data - Document

You can then instantiate a BannerDoc object and access its attributes:

banner = BannerDoc(
image_url="https://example.com/image.png"',
title="Hello World',
description='This is a banner',

)
assert banner.image_url == 'https://example.com/image.png’
assert banner.title == 'Hello World'

assert banner.description == 'This is a banner'

Representing multimodal data with nested
structure

Let's say you want to represent a YouTube video in your application, perhaps to build a search system for YouTube
videos.

A YouTube video is not only composed of a video, but also has a title, description, thumbnail (and more, but let's
keep it simple).

*
All of these elements are from different modalities: 2“2‘ Ircnds
the title and description are text, .
)~

the thumbnail is an image,

CONFUSED_____
; ; : : MILLENNIAL DESIGNER
and the video itself is, well, a video. el Tk
DocArray lets you represent all of this multimodal data \ Year in Review: 2021 in Graphic Design
in a single object. Linus Boman @

119K views « 1 year ago

Representing multimodal data with nested
structure

First for the thumbnail image:

from docarray import BaseDoc
from docarray.typing import ImageUrl, ImageBytes

class ImageDoc(BaseDoc):
url: ImageUrl
bytes: ImageBytes = (
None # bytes are not always loaded in memory, so we make it optional

)

Representing multimodal data with nested
structure

Then for the video itself:

from docarray import BaseDoc
from docarray.typing import VideoUrl, VideoBytes

class VideoDoc(BaseDoc):
url: VideoUrl
bytes: VideoBytes = (
None # bytes are not always loaded in memory, so we make it optional

)

Representing multimodal data with nested
structure

All the elements that compose a YouTube video are ready:

from docarray import BaseDoc

class YouTubeVideoDoc(BaseDoc) :
title: str
description: str
thumbnail: ImageDoc
video: VideoDoc

Representing multimodal data with nested
structure

All the elements that compose a YouTube video are ready:

You see here that ImageDoc and VideoDoc are also

BaseDoc, and they are later used inside another
from docarray import BaseDoc BaseDoc’. This is what we call nested data

representation.
BaseDoc can be nested to represent any kind of data
class YouTubeVideoDoc(BaseDoc) : hierarchy.
title: str
description: str
thumbnail: ImageDoc
video: VideoDoc

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc

Representing multimodal data with nested
structure

All the elements that compose a YouTube video are ready:

You see here that ImageDoc and VideoDoc are also
BaseDoc, and they are later used inside another

from docarray import BaseDoc BaseDoc'. This is what we call nested data
representation.

BaseDoc can be nested to represent any kind of data

class YouTubeVideoDoc(BaseDoc) : hierarchy.
title: str
description: str This representation can be used to send or
thumbnail: ImageDoc store data. You can even use it directly to
video: VideoDoc train a machine learning Pytorch model on

this representation.

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/user_guide/sending/first_step/
https://docs.docarray.org/user_guide/storing/first_step/
https://docs.docarray.org/how_to/multimodal_training_and_serving/
https://pytorch.org/docs/stable/index.html

Recap: representing multimodal data

- 'Dataclass’ look and feel, for defining the structure
- Strong typing, for defining modality

- Python built-in types
- Numpy types
- URI types
- Text
- Image
- Audio
- Video
- Mesh3D
- PointCloud3D
- Tensor types
- ImageTensor
- AudioTensor
- VideoTensor
- Embedding
- Optionall]

from docarray impotrt BaseDoc
from docarray.typii

s

class ImageDoc(BaséDoc) :

url:|ImageUrl
bytes: ImageBytes = (
None # bytes are not

)

ng import ImageUrl, ImageBytes

g

lways loaded in m

Representing an array of multimodal data

The fundamental building block of DocArray is the BaseDoc class which represents a single document, a single
datapoint.

However, in machine learning we often need to work with an array of documents, and an array of data points.

We introduce

e Doclist which is a Python list of BaseDocs
e DocVec which is a column-based representation of BaseDocs

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da_stack/#docarray.array.doc_vec.doc_vec.DocVec

Jine

Example of DoclList

First you need to create a Doc class, our data schema. Let's say you want to represent a banner
with an image, a title and a description:

from docarray import BaseDoc, Doclist
from docarray.typing import ImageUrl

class BannerDoc(BaseDoc) :
image: ImageUrl
title: str
description: str

Example of DoclList

First you need to create a Doc class, our data schema. Let's say you want to represent a banner
with an image, a title and a description:

from docarray import BaseDoc, Doclist
from docarray.typing import ImageUrl

cl Let's instantiate several BannerDoc S:

banner1 = BannerDoc(
image="https://example.com/imagel.png',
title="'Hello World',
description="'This is a banner',

)

banner2 = BannerDoc(
image="'https://example.com/image2.png',
title='Bye Bye World',
description='This is (distopic) banner',

Jine

Example of DoclList

DocList and DocVec are both AnyDocArrays. The following section will use DocList as an example, but the same applies to DocVec.

You can now collect them into a DocList of BannerDoc S:

docs = DoclList[BannerDoc]([banner1, banner2])

docs.summary ()

— Doclist Summary ——

| |
| Type DocList[BannerDoc] |
| Length 2 |
| |
(J

—— Document Schema ——

| |
| BannerDoc |
| F— image: ImageUrl |
| | title: str |
| |
| |
L J

L— description: str

Example of DoclList

You can access documents inside it with the usual Python array API:

print(docs[0])

BannerDoc(image="https://example.com/imagel1.png', title='Hello World', description:

or iterate over it:

for doc in docs:
print(doc)

BannerDoc(image='https://example.com/imagel.png', title='Hello World', description:
BannerDoc(image="'https://example.com/image2.png', title='Bye Bye World', descriptic

Accessing member attribute at array level

At the document level:

print(banner1.image)

https://example.com/imagel.png'
At the Array level:

print(docs.image)

["https://example.com/imagel.png', 'https://example.com/image2.png']

Accessing member attribute at array level

At the document level:

print(banner1.image)

https://example.com/imagel.png'
At the Array level: You can even access the attributes of the nested BaseDoc at the Array level:

print(docs.image) print(docs.banner.image)

['https://example.com/imagel.png', 'hi ['https://example.com/imagel.png', 'https://example.com/image2.png']
This is just the same way that you would do it with BaseDoc:

print(pagel.banner.image)

"https://example.com/imagel.png'

Jine

Doclist[DocType] syntax

DocList[DocType] creates a custom DocList that can only contain DocType
Documents.

Non-typing Doclist for Strong-typing Doclist for
heterogeneous data homogeneous data

from docarray import BaseDoc, DoclList

try:
from docarray.typing import ImageUrl, AudioUrl 2/

docs :[DocList[ImageDoc}(]
[
class ImageDoc(BaseDoc): ImageDoc(url="https://example.com/imagel.png'),
url: ImageUrl AudioDoc(url="https://example.com/audiol.mp3")

]

)

except ValueError as e:
print(e)

class AudioDoc(BaseDoc) :
url: AudioUrl

docs = DocList(
[ValueError: AudioDoc(
ImageDoc(url="https://example.com/image1.png'), id='e286b10f5853348a092846010206441",
AudtobacUElSEhEtRs i/ exanple con/Sudicl jnps) url=AudioUrl('https://example.com/audiol.mp3', host_type='domain")
)) is not a <class '__main__.ImageDoc'>

https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList

Doclist vs DocVec

DocList is based on Python Lists. You can append, extend, insert, pop, and so on. In DocList, data is individually
owned by each BaseDoc collect just different Document references.

Use DocList when you want to be able to rearrange or re-rank your data. One flaw of DocList is that none of the
data is contiguous in memory, so you cannot leverage functions that require contiguous data without first copying

the data in a continuous array.

DocVec is a columnar data structure. DocVec is always an array of homogeneous Documents. The idea is that
every attribute of the BaseDoc will be stored in a contiguous array: a column.

https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da_stack/#docarray.array.doc_vec.doc_vec.DocVec

Doclist vs DocVec

Let's say you want to embed a batch of Images:

def embed(image: NdArray['batch_size', 3, 224, 224]):

Doclist vs DocVec

from docarray import BaseDoc
from docarray.typing import NdArray

class ImageDoc(BaseDoc):
image: NdArray|
3, 224, 224
] = None # [3, 224, 224] this just mean we know in advance the shape of the t¢

Doclist vs DocVec

from docarray import BaseDoc
from docarray.typing import NdArray

class |
im: from docarray import DoclList

import numpy as np

docs = DocList[ImageDoc](

[ImageDoc(image=np.random.rand(3, 224, 224)) for
)

embed (np.stack(docs.image))

embed (np.stack(docs.image))

in range(10)]

Doclist vs DocVec

from docarray import BaseDoc
from docarray.typing import NdArray

class ImageDoc(BaseDoc):

image:
% from docarray import DocVec
IF=RNE import numpy as np

11
2
3
4 docs = DocVec[ImageDoc](

5 [ImageDoc(image=np.random.rand(3, 224, 224)) for _ in range(10)]
6

7

8

)

embed(docs.image)

Access the view of Documentin DocVec

If you access a document inside a bocvec you will get a document view. A document view is a view of the columnar
data structure which looks and behaves like a Baseboc instance. It is a Baseboc instance but with a different way to
access the data.

from docarray import DocVec

docs = DocVec|ImageDoc](
[ImageDoc (image=np.random.rand(3, 224, 224)) for _ in range(10)]
)

my_doc = docs[0]

assert my_doc.is_view() # True
whereas with DoclList:

docs = Doclist[ImageDoc](

[ImageDoc(image=np.random.rand(3, 224, 224)) for in range(10)]

)
my_doc = docs[0]

assert not my_doc.is_view() # False

Access the view of Documentin DocVec

If you access a document inside a bocvec you will get a document view. A document view is a view of the columnar
data structure which looks and behaves like a Baseboc instance. It is a Baseboc instance but with a different way to
access the data.

you should use DocVec when you need to work with
contiguous data, and you should use DocList when
you need to rearrange or extend your data.

doc DocList[ImageDoc](

[ImageDoc(image=np.random.rand(3, 224, 224)) for _ in range(10)]
)
my_d docs[0]

Storing & retrieving via Vector Database

from d ray import DocList, B
from docarray.index import Hr
import numpy as
5 from docarray.typing import ImageUrl, Image 0r,

class ImageDoc(BaseDoc):

embedding: NdA [128]

= DocList[I sDoc] (
[
(

url="https://upload.wikimedia.org/wikipedia/commons/2/2f/Alpamayo. jpg",
> =np.zeros((3, 224, 224)),
=np.random.random((128,)),

)
for in range(100)
]
)
= HnswDocumentIndex[ImageDoc](work_dir='/tmp/test_index2')
ex.index(dl)

ﬁ‘~, SCC = index.find(ry, limit=10, sea eld="'embedding')

Storing & retrieving via Vector Database

Document Index: ORM for vector DBs

Document Index provides a unified interface to a number of vector databases.
You can think of Document Index as an ORM for vector databases.
Currently, DocArray supports the following vector databases:

Weaviate | Docs

Qdrant | Docs

Elasticsearch v7 and v8 | Docs
HNSWIib | Docs

*Old DocArray v0.21 supports Milvus, Redis, Opensearch

https://learn.microsoft.com/en-us/semantic-kernel/concepts-ai/vectordb
https://sqlmodel.tiangolo.com/db-to-code/
https://weaviate.io/
https://docs.docarray.org/user_guide/storing/index_weaviate/
https://qdrant.tech/
https://docs.docarray.org/user_guide/storing/index_qdrant/
https://www.elastic.co/elasticsearch/
https://docs.docarray.org/user_guide/storing/index_elastic/
https://github.com/nmslib/hnswlib
https://docs.docarray.org/user_guide/storing/index_hnswlib/

Construct a HNSWDocumentindex

To use HnswDocumentindex, you need to install extra dependencies with the following command: pip install "docarray[hnswilib]"

To create a Document Index, you first need a document that defines the schema of your index:

from docarray import BaseDoc
from docarray.index import HnswDocumentIndex
from docarray.typing import NdArray

class MyDoc(BaseDoc) :
embedding: NdArray[128]
text: str

db = HnswDocumentIndex[MyDoc] (work_dir="'./my_test_db")

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex

Construct a HNSWDocumentindex

To use HnswDocumentindex, you need to install extra dependencies with the following command: pip install "docarray[hnswilib]"

In this code snippet, HnswDocumentIndex takes a
To create a Document Index, you first need a document th gchema of the form of Myboc. The Document Index

then creates a column for each field in MyDoc.

from docarray import BaseDoc
from docarray.index import HnswDocumentIndgx
from docarray.typing import NdArray

class MyDoc(BaseDoc) :
embedding: NdArray[128]
text: str

db = HnswDocumentIndex[MyDoc] (work_dir="'./my_tes

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex

Construct a HNSWDocumentindex

To use HnswDocumentindex, you need to install extra dependencies with the following command: pip install "docarray[hnswilib]"

In this code snippet, HnswDocumentIndex takes a
To create a Document Index, you first need a document th gchema of the form of Myboc. The Document Index

then creates a column for each field in MyDoc.

from docarray import BaseDoc
from docarray.index import HnswDocumentIndex
from docarray.typing import NdArray

The column types in the backend database are
determined by the type hints of the document's
fields. Optionally, you can customize the database
types for every field.

class MyDoc(BaseDoc) :
embedding: NdArray[128]
text: str

db = HnswDocumentIndex[MyDoc] (work_dir="'./my_tes

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations

Construct a HNSWDocumentindex

To use HnswDocumentindex, you need to install extra dependencies with the following command: pip install "docarray[hnswilib]"

In this code snippet, HnswDocumentIndex takes a
To create a Document Index, you first need a document th gchema of the form of Myboc. The Document Index

then creates a column for each field in MyDoc.
from docarray import BaseDoc

from docarray.index import HnswDocumentIndex
from docarray.typing import NdArray

The column types in the backend database are
determined by the type hints of the document's
fields. Optionally, you can customize the database
types for every field.

class MyDoc(BaseDoc): Most vector databases need to know the
embedding: NdArray[128] «————— " dimensionality of the vectors that will be stored.
text: str Here, that is automatically inferred from the type hint
of the embedding field: NdArray[128] means that the

database will store vectors with 128 dimensions.
db = HnswDocumentIndex[MyDoc] (work_dir="'./my_tes

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations

Index data

Now that you have a Document Index, you can add data to it, using the index() method:

import numpy as np
from docarray import DoclList

create some random data
docs = DoclList[MyDoc](
[MyDoc (embedding=np.random.rand(128), text=f'text {i}') for i in range(160)]

)

index the data
db.index(docs)

Index data

Now that you have a Document Index, you can add data to it, using the index() method:

import numpy as np
from docarray import DoclList

create some random data
docs = DoclList[MyDoc](
[MyDoc (embedding=

ndom.rand(128), text=f'text {i}'

As you can see, DoclList[Myboc] and

from docarr ort BaseDoc HnswDocumentIndex[MyDoc] are both

from docarray.index t_HnswDocume parameterized with vypoc. This means
from docarray.typing import that they share the same schema, and in
general, the schema of a Document
Index and the data that you want to
store need to have compatible schemas

index the data
db.index(docs)

class MyDoc(BaseDoc) :
embedding: NdArray[128]
text: str

db = HnswDocumentIndex[MyDoc] (work_dir="./my_test_db")

Vector search

Search by Document Search by raw vector

create a query Document
query = MyDoc(embedding=np.random.rand(128), text='query')

find similar Documents
matches, scores = db.find(query, search_field='embedding', limit=5)

print(f'{matches=}")
print(f'{matches.text=}")
print(f'{scores=}")

Vector search

Search by Document Search by raw vector Search by Document Search by raw vector

create a query Document # create a query vector

query = MyDoc(embedding=np.random.rand(128), text='query') query = np.random.rand(128)

find similar Documents # find similar Documents

matches, scores = db.find(query, search_field='embedding', limit=5) matches, scores = db.find(query, search_field='embedding', 1limit=5)
print(f'{matches=}") print(f'{matches=}")

print(f'{matches.text=}") print(f'{matches.text=}")

print(f'{scores=}") print(f'{scores=}")

Vector search

Search by Document Search by raw vector

create a query Document
query = MyDoc(embedding=np.random.rand(128), text='query')

find similar Documents
matches, scores = db.find(query, search_field='embedding', limit=5)

print(f'{matches=}")

print(f'{matches.text=}")
print(f'{scores=}")

Search by Documents Search by raw vectors

create some query Documents
queries = DoclList[MyDoc](

MyDoc (embedding=np.random.rand(128), text=f'query {i}') for i in range(3)
)

find similar Documents
matches, scores = db.find_batched(queries, search_field='embedding', 1limit=5)

print(f'{matches=}")
print(f'{matches[@].text=}")
print(f'{scores=}")

Search by Document Search by raw vector

create a query vector
query = np.random.rand(128)

find similar Documents
matches, scores = db.find(query, search_field='embedding'

print(f'{matches=}")
print(f'{matches.text=}")
print(f'{scores=}")

, limit=5)

Vector search

Search by Document Search by raw vector

create a query Document

query = MyDoc(embedding=np.random.rand(128), text='query')

find similar Documents

matches, scores = db.find(query, search_field='embedding', limit=5)

print(f'{matches=}")
print(f'{matches.text=}")
print(f'{scores=}")

Search by Documents Search by raw vectors

create some query Documents
queries = DoclList[MyDoc](

MyDoc (embedding=np.random.rand(128), text=f'query {i}') for i in range(3)

)

find similar Documents

matches, scores = db.find_batched(queries, search_field='embedding', 1limit=5)

print(f'{matches=}")
print(f'{matches[@].text=}")
print(f'{scores=}")

Search by Document Search by raw vector

create a query vector
query = np.random.rand(128)

find similar Documents

matches, scores = db.find(query, search_field='embedding'

print(f'{matches=}")
print(f'{matches.text=}")
print(f'{scores=}")

Search by Documents Search by raw vectors

create some query vectors
query = np.random.rand(3, 128)

find similar Documents

, limit=5)

matches, scores = db.find_batched(query, search_field='embedding', limit=5)

print(f'{matches=}")
print(f'{matches[0].text=}")
print(f'{scores=}")

Hybrid search through the query builder

Document Index supports atomic operations for vector similarity search, text search and filter search.

To combine these operations into a single, hybrid search query, you can use the query builder that is accessible
through build_query():

prepare a query
g_doc = MyDoc(embedding=np.random.rand(128), text='query')

query = (
db.build_query() # get empty query object
.find(query=q_doc, search_field='embedding') # add vector similarity search

.filter(filter_query={'text': {'Sexists': True}}) # add filter search
.build() # build the query

execute the combined query and return the results
results = db.execute_query(query)
print(f'{results=}")

https://docs.docarray.org/API_reference/doc_index/doc_index/#docarray.index.abstract.BaseDocIndex.build_query

Customize vector DB configuration

db = HnswDocumentIndex[MyDoc] (work_dir="/tmp/my_db")

db.configure(
default_column_config={
np.ndarray: {

dam s =1,
"index': True,
'space': 'ip',

‘'max_elements': 2048,
"ef_construction': 100,

Yefit N5

‘M': 8,
‘allow_replace_deleted' : True,
‘num_threads': 5,

None: {},

pine 1 from docarray.typing import Imac

Indexing and e

jeUrl, VideoUrl,

tensor: AnyTensor = Field(space='cosine', dim=64)

searching

10 class VideoDoc(BaseDoc):

mUItimOdal data R S N leld(space='cosine’, dim=128)
In the fo”OW|ng example you can see a , class YouTubeVideoDoc(BaseDoc):

itle: str

complex schema that contains nested
Documents. The vouTubevideoDoc contains a
VideoDoc @and an ImageDoc, alongside some
"basic" fields:

oc(u

* , index [-
2021 rrends
OF N~

CONFUSED

np.ones(256),

MILLENNIAL DESIGNER)
REACTS:______\WTF? for i in range(8)

- Year in Review: 2021 in Graphic Design

Linus Boman @
119K views * 1 year ago 39 doc_1index.index(index_docs)

ld(space='cosine', dim=256)

lex[YouTubeVideoDoc](work_dir="'/tmp2"')

tion=f'this is video from author {10*i}',

l=f'http://example.ai/images/{1}',

(url=f'http://example.ai/videos/{i}',

€

sor=np.ones(64)),
=np.ones(128)),

Indexing and searching multimodal data

You can perform search on any nesting level by using the dunder operator to specify the field defined in the
nested data.

2 query_doc = Ygufut%VLHequa(
le=f'video query',

ription=f'this i1s a query video',
‘ mageDoc(url=f'http://example.ai/images/1024"', sor=np.ones(64)),
Vi eoDoc(url=f'http://example.ai/videos/1024"', tensor=np.ones(128)),
tensor=np.ones(256),

—_

1 docs, scores = doc_1index.find(query_doc, search_field='tensor'

Il

1 docs, scores = doc_index.find(query_doc, search_field='thumbnail__tensor', limit=3)

’ docs, scores = doc_index.find(query_doc, search_field='video__tensor', limit=3)

class ImageDoc(B)oc):

pine
r = | (='cosine', dim=64)
L o
Nested Doclist with
5 i
mages: st[ImageDoc] -
'Ib."dex i : 1sor = Field(='cosine', dim=128)
s I class MyDoc(BaseDoc):
)cs: Do t[oc]
- ¢ AnyTensor = Field(e='cosine', dim=256)

Documents can be nested by containing a pocList of other
documents, which is a slightly more complicated scenario S5 e e M (e e
than the previous one.

5 = [
(
ycs=Doc [leoDoc](
D (
. . . l=f'http://example.ai/videos/{i}-{j}',
In this case, the nested DoclList will be represented as a new 2 fesehee L eegehoe
sub-index (or table, collection, etc., depending on the i P
database backend), that is linked with the parent index T
(table, collection, ...). g enimhgei
> Do
=np.ones(128),
)
for in range(10)
]

s50r=np.ones(256),
)

for 1 in range(10)

x.index(index_docs)

Search by subindex

1 # find by the VideoDoc tensor

2 root_docs, sub_docs, scores = doc_index.find_subindex(

3 np.ones(128), subindex='docs', search_field='tensor_video', limit=3

4)

5

6 # find by the "ImageDoc tensor

7 root_docs, sub_docs, scores = doc_index.find_subindex(

8 np.ones(64), subindex='docs__images', search_field='tensor_image', limit=3
9)

10

Transiting data over network

3 from do

Sending via REST API/JSON -> Backend: FastAPI

import numpy as np
from fa)1 import FastAPI
rray.base_doc import DocArrayResponse
from docarray import BaseDoc

5 from docarray.documents import ImageDoc
6 from docarray.typing import NdArray

8 class InputDoc(Ba

3 class OutputDoc(B

21 @app.post("/embed/", re
22 async def create_item(doc:

seDoc):

img: ImageDoc

text: str

er ding_clip: N

doc = OutputDoc(

embedding_clip=e

return doc

Sending via gRPC/ws -> Backend: Jina microservice

Transiting data over network

Sending via REST API/JSON -> Backend: FastAPI Sending via gRPC/ws -> Backend: Jina microservice

import numpy as np

from fastapi import FastAPI

from docarray.base_doc import DocArrayResponse
from docarray import BaseDoc

from docarray.documents import ImageDoc

from docarray.typing import NdArray

U WNRF

)

class InputDoc(BaseDoc):
img: ImageDoc
10 text: str

O

13 class OutputDoc(BaseDoc):
14 embedding_clip: NdArray
15 embedding_bert: NdArray

8 app = FastAPI{)

async with AsyncClient(app=app, base_url="http://test") as ac:

21 @app.post("/e .
response = await ac.post("/doc/", data=docs.to_json())

async def cre
(|

doc = Out
embed

N
w N =

S

assert response.status_code == 200

) 5 . i i
return do 6 docs = DocList[TextDoc].from_json(response.content.decode())

NNNNRNNN
oO~NOUL A W

Transiting data over network

Sending via gRPC/ws -> Backend: Jina microservice

4

1
2
3
5
7

o)

O

9
10
11

2
v 4

=)
]

14

class WhisperExecutor(Executor):

def __1init__(self, device: str, *args, **kwargs):
super().__init__(*args, **kwargs)

self.model = whisper.load_model("medium.en", device=device)

@requests
def transcribe(self, docs: DocList[AudioURL], **kwargs) -> DocList[Response]:
response_docs = DocList[Response]()
for doc in docs:
transcribed text = self.model.transcribe(str(doc.audio))['text']
response_docs.append(Response(text=transcribed_text))

return response_doc

Transiting data over network

Sending via gRPC/ws -> Backend: Jina microservice

1
2
3
<
5)
6
7
8

9
10
1kl
15
13
14

class WhisperExecutor(Executor):

def __1init__(self, device: str, *args, **kwargs):

super().

init__(*args, **kwargs)

self.model = whisper.load_model("medium.en", device=device)

@requests

def transcribe(self, docs: DocList[AudioURL], **kwargs) -> DocList[Response]:

response_docs = DocList[Respa
for doc in docs:
transcribed _text = self.m
response_docs.append(Resp

return response_doc

1
2

0o ~NOY U B W

= =
[<]

12
13

dep = Deployment(
uses=WhisperExecutor, uses_with={'device': "cpu"}, port=12349,
timeout_ready=-1

)

with dep:
docs = d.post(
on='/transcribe',
inputs=[AudioURL(audio="'resources/audio.mp3')],
return_type=DocList[Response],

)

print(docs[0].text)

Agenda

- Preliminary: multimodal Al

- Opensource package: DocArray
- Motivation

Representing data

Transiting data

Storing data

Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+
concepts like data classes could be helpful.

An end to end example

https://docs.docarray.org/how to/multimodal training _and_serving/

https://docs.docarray.org/how_to/multimodal_training_and_serving/

Berlin - Beijing - Shenzhen

Thanks for
your
attentlon

& jina.qi

0 @JinoAl_
¥ hanxico@jina.ai

