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About me & Jina AI
Han Xiao, Founder & CEO of Jina AI. Based in Berlin, Germany.

- ML PhD in 2014 TU Munich; Zalando Research; Tencent AI Lab; Creator 
of Fashion-MNIST.

Jina AI

- Founded in 2020, focus on multimodal AI search & create
- Opensource contributor: Jina, DocArray (Linux Foundation), 

CLIP-as-service, … 
- 60 people, HQ in Berlin. Offices in Beijing, Shenzhen.
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Prompt tuning

Prompt serving

Model tuning

Model serving

the deployment of fine-tuned models in a 
production environment, usually requiring 
substantial resources such as GPU hosting. 
MLOps, emphasizing the serving of mid-size to 
large models in a scalable, efficient, and reliable 
manner.

the process of crafting and refining the input 
prompts in order to guide its output towards 
specific, desired responses.

wrapping and serving prompts through an API, 
without hosting heavy models. The API calls a 
public large language model service and handles 
the orchestration of inputs and outputs in a chain 
of operations.

Also known as fine-tuning, involves adjusting the 
parameters of a pre-trained model on a new, 
often task-specific dataset to improve its 
performance and adapt it to a specific 
application.
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Agenda

- Preliminary: multimodal AI
- Opensource package: DocArray

- Motivation
- Representing data
- Transiting data
- Storing data
- Retrieving data

- Multimodal at scale in production

This tutorial may require technical knowledge. Familiarity with Python 3.7+ 
concepts like data classes could be helpful.
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from unimodal to multimodal 
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From unimodal to multimodal

 "modality" roughly means "data type". 

- Unimodal AI refers to applying AI to one specific type of data. 
- Most early machine learning works fall into this category. 
- Even today, when you open any machine learning literature, 

unimodal AI is still the majority of the content.



Unimodal - NLP
LDA was the 2010's transformer



Unimodal tasks in NLP
Adhoc methods for NLP problems



Unimodal - CV
Fashion-MNIST, 2017



Unimodal tasks in CV



Unimodal tasks in speech & audio



Unimodal know-how are hardly transferable

● Tasks are specific to just one modality (e.g. 

textual, visual, acoustic, etc).

● Knowledge is learned from and applied to 

only one modality (i.e. a visual algorithm can 

only learn from and be applied to images).



A detour: cross-modal model
NIPS 2010, Cross-LDA



Erase the boundary between modalities

- Tasks are shared and transferred between multiple modalities (so 
one algorithm can work with images and text and audio).

- Knowledge is learned from and applied to multiple modalities (so an 
algorithm can learn from textual data and apply that to visual data).



Paradigm shift from unimodal to multimodal

The rise of multimodal AI can be attributed to advances in two machine 
learning techniques: Representation learning and transfer learning.

- Representation learning lets models create common representations 
for all modalities.

- Transfer learning lets models first learn fundamental knowledge, and 
then fine-tune on specific domains.



CLIP, DALLE, BLIP, Bark, GPT4

We will see more and more AI 
applications move beyond 
one data modality and 
leverage relationships 
between different modalities



“An artificial intelligence system 
trained on words and sentences 

alone will never approximate 
human understanding.”

Y. Lecun in 2022 in AI And The Limits Of Language



Multimodal AI is the future, 
but the ML ecosystem is not yet 

suited for it.
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- Opensource package: DocArray
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concepts like data classes could be helpful.



DocArray for 
representing, transiting, 

storing, searching 
multimodal data



Representing multimodal data is a pain

- Lack of common interface for different modalities makes it difficult to 
work with multiple modalities at the same time.

- No easy way to represent unstructured and nested multimodal data.



Storage

Audio

Image

Video

Text

3D mesh

ComputePreprocess

…
……

…

Lack of common interface



● Unstructured 

document

● Nested content

● Different modalities 
(text, image, …)

No easy way to represent 
unstructured nested multimodal data



DocArray way of representing multimodal 
data



Frequent data transfer over network is 
expensive

Multimodal data is processed by multiple models and models are usually deployed in a 
distributed way.



Performant serialization is important
DocArray is designed to be “ready-to-wire” at anytime.



Binary serialization optimized for in-transit & 
at-rest



Binary serialization optimized for in-transit & 
at-rest



Storing nested data with databases is 
complicated

- Complex and nested schema are not directly supported in 
databases

- Explosion in numbers of vector databases with different APIs but no 
universal client



DocArray way of storing data



DocArray way of storing data



Vector Search via a consistent API



Vector Search via a consistent API



Quick Recap
● It’s like JSON, but for intensive computation.
● It’s like numpy.ndarray, but for unstructured data.
● It’s like pandas.DataFrame, but for nested and mixed media data with embeddings.
● It’s like Protobuf, but for data scientists and deep learning engineers.



Quick Recap
● It’s like JSON, but for intensive computation.
● It’s like numpy.ndarray, but for unstructured data.
● It’s like pandas.DataFrame, but for nested and mixed media data with embeddings.
● It’s like Protobuf, but for data scientists and deep learning engineers.



Hands-on DocArray



Install DocArray
To install DocArray (0.33), you can use the following command:

pip install "docarray[full]"

https://docs.docarray.org/

For old DocArray, more compatibility and features

pip install "docarray[full]"==0.21

https://docs.docarray.org/


Representing data - Document
At the heart of DocArray lies the concept of BaseDoc.

The following Python code defines a BannerDoc class that can be used to represent the data of a website banner:

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc


Representing data - Document



Representing multimodal data with nested 
structure
Let's say you want to represent a YouTube video in your application, perhaps to build a search system for YouTube 
videos. 

A YouTube video is not only composed of a video, but also has a title, description, thumbnail (and more, but let's 
keep it simple).

All of these elements are from different modalities: 

the title and description are text, 

the thumbnail is an image, 

and the video itself is, well, a video.

DocArray lets you represent all of this multimodal data 
in a single object.



Representing multimodal data with nested 
structure



Representing multimodal data with nested 
structure



Representing multimodal data with nested 
structure



Representing multimodal data with nested 
structure

You see here that ImageDoc and VideoDoc are also 
BaseDoc, and they are later used inside another 
BaseDoc`. This is what we call nested data 
representation.

BaseDoc can be nested to represent any kind of data 
hierarchy.

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc


Representing multimodal data with nested 
structure

You see here that ImageDoc and VideoDoc are also 
BaseDoc, and they are later used inside another 
BaseDoc`. This is what we call nested data 
representation.

BaseDoc can be nested to represent any kind of data 
hierarchy.

This representation can be used to send or 
store data. You can even use it directly to 
train a machine learning Pytorch model on 
this representation.

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/user_guide/sending/first_step/
https://docs.docarray.org/user_guide/storing/first_step/
https://docs.docarray.org/how_to/multimodal_training_and_serving/
https://pytorch.org/docs/stable/index.html


Recap: representing multimodal data 
- "Dataclass" look and feel, for defining the structure
- Strong typing, for defining modality

- Python built-in types
- Numpy types
- URI types

- Text
- Image
- Audio
- Video
- Mesh3D
- PointCloud3D

- Tensor types
- ImageTensor
- AudioTensor
- VideoTensor
- Embedding

- Optional[]



Representing an array of multimodal data
The fundamental building block of DocArray is the BaseDoc class which represents a single document, a single 
datapoint. 

However, in machine learning we often need to work with an array of documents, and an array of data points.

We introduce

● DocList which is a Python list of BaseDocs
● DocVec which is a column-based representation of BaseDocs

https://docs.docarray.org/API_reference/base_doc/base_doc/#docarray.base_doc.doc.BaseDoc
https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da_stack/#docarray.array.doc_vec.doc_vec.DocVec


Example of DocList



Example of DocList



Example of DocList
DocList and DocVec are both AnyDocArrays. The following section will use DocList as an example, but the same applies to DocVec.



Example of DocList



Accessing member attribute at array level



Accessing member attribute at array level



DocList[DocType] syntax
DocList[DocType] creates a custom DocList that can only contain DocType 
Documents.

Non-typing DocList for 
heterogeneous data

Strong-typing DocList for 
homogeneous data

https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList


DocList vs DocVec
DocList is based on Python Lists. You can append, extend, insert, pop, and so on. In DocList, data is individually 
owned by each BaseDoc collect just different Document references. 

Use DocList when you want to be able to rearrange or re-rank your data. One flaw of DocList is that none of the 
data is contiguous in memory, so you cannot leverage functions that require contiguous data without first copying 
the data in a continuous array.

DocVec is a columnar data structure. DocVec is always an array of homogeneous Documents. The idea is that 
every attribute of the BaseDoc will be stored in a contiguous array: a column.

https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da/#docarray.array.doc_list.doc_list.DocList
https://docs.docarray.org/API_reference/array/da_stack/#docarray.array.doc_vec.doc_vec.DocVec


DocList vs DocVec
Let's say you want to embed a batch of Images:

def embed(image: NdArray['batch_size', 3, 224, 224]):

...



DocList vs DocVec



DocList vs DocVec

embed

embed



DocList vs DocVec



Access the view of Document in DocVec
If you access a document inside a DocVec you will get a document view. A document view is a view of the columnar 
data structure which looks and behaves like a BaseDoc instance. It is a BaseDoc instance but with a different way to 
access the data.



Access the view of Document in DocVec
If you access a document inside a DocVec you will get a document view. A document view is a view of the columnar 
data structure which looks and behaves like a BaseDoc instance. It is a BaseDoc instance but with a different way to 
access the data.

you should use DocVec when you need to work with 
contiguous data, and you should use DocList when 
you need to rearrange or extend your data.



Storing & retrieving via Vector Database



Storing & retrieving via Vector Database



Document Index: ORM for vector DBs
Document Index provides a unified interface to a number of vector databases. 

You can think of Document Index as an ORM for vector databases.

Currently, DocArray supports the following vector databases:

● Weaviate | Docs
● Qdrant | Docs
● Elasticsearch v7 and v8 | Docs
● HNSWlib | Docs

*Old DocArray v0.21 supports Milvus, Redis, Opensearch

https://learn.microsoft.com/en-us/semantic-kernel/concepts-ai/vectordb
https://sqlmodel.tiangolo.com/db-to-code/
https://weaviate.io/
https://docs.docarray.org/user_guide/storing/index_weaviate/
https://qdrant.tech/
https://docs.docarray.org/user_guide/storing/index_qdrant/
https://www.elastic.co/elasticsearch/
https://docs.docarray.org/user_guide/storing/index_elastic/
https://github.com/nmslib/hnswlib
https://docs.docarray.org/user_guide/storing/index_hnswlib/


Construct a HNSWDocumentIndex
To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex


Construct a HNSWDocumentIndex
To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

In this code snippet, HnswDocumentIndex takes a 
schema of the form of MyDoc. The Document Index 
then creates a column for each field in MyDoc.

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex


Construct a HNSWDocumentIndex
To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

In this code snippet, HnswDocumentIndex takes a 
schema of the form of MyDoc. The Document Index 
then creates a column for each field in MyDoc.

The column types in the backend database are 
determined by the type hints of the document's 
fields. Optionally, you can customize the database 
types for every field.

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations


Construct a HNSWDocumentIndex
To use HnswDocumentIndex, you need to install extra dependencies with the following command: pip install "docarray[hnswlib]"

In this code snippet, HnswDocumentIndex takes a 
schema of the form of MyDoc. The Document Index 
then creates a column for each field in MyDoc.

The column types in the backend database are 
determined by the type hints of the document's 
fields. Optionally, you can customize the database 
types for every field.

Most vector databases need to know the 
dimensionality of the vectors that will be stored. 
Here, that is automatically inferred from the type hint 
of the embedding field: NdArray[128] means that the 
database will store vectors with 128 dimensions.

https://docs.docarray.org/API_reference/doc_index/backends/hnswlib/#docarray.index.backends.hnswlib.HnswDocumentIndex
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations
https://docs.docarray.org/user_guide/storing/docindex/#customize-configurations


Index data



Index data

As you can see, DocList[MyDoc] and 
HnswDocumentIndex[MyDoc] are both 
parameterized with MyDoc. This means 
that they share the same schema, and in 
general, the schema of a Document 
Index and the data that you want to 
store need to have compatible schemas



Vector search



Vector search



Vector search



Vector search



Hybrid search through the query builder
Document Index supports atomic operations for vector similarity search, text search and filter search.

To combine these operations into a single, hybrid search query, you can use the query builder that is accessible 
through build_query():

https://docs.docarray.org/API_reference/doc_index/doc_index/#docarray.index.abstract.BaseDocIndex.build_query


Customize vector DB configuration



Indexing and 
searching 
multimodal data
In the following example you can see a 
complex schema that contains nested 
Documents. The YouTubeVideoDoc contains a 
VideoDoc and an ImageDoc, alongside some 
"basic" fields:



Indexing and searching multimodal data
You can perform search on any nesting level by using the dunder operator to specify the field defined in the 
nested data.



Nested DocList with 
subindex
Documents can be nested by containing a DocList of other 
documents, which is a slightly more complicated scenario 
than the previous one.

In this case, the nested DocList will be represented as a new 
sub-index (or table, collection, etc., depending on the 
database backend), that is linked with the parent index 
(table, collection, ...).



Search by subindex



Transiting data over network
Sending via REST API/JSON -> Backend: FastAPI Sending via gRPC/ws -> Backend: Jina microservice
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Transiting data over network
Sending via gRPC/ws -> Backend: Jina microservice



Transiting data over network
Sending via gRPC/ws -> Backend: Jina microservice
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An end to end example

https://docs.docarray.org/how_to/multimodal_training_and_serving/ 

https://docs.docarray.org/how_to/multimodal_training_and_serving/
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